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Optimality Analysis of Adaptive Sampled Control of
Hybrid Systems With Quadratic Index

Shuping Tan, Ji-Feng Zhang, and Lili Yao

Abstract—This note is concerned with the sampled-data based linear
quadratic (LQ) adaptive control of continuous-time systems with unknown
Markov jump parameters. A parameter estimator and a control design
method are given. It is shown that when the sample step size is small, the
sampled-data based adaptive control is suboptimal under LQ index. The
result is illustrated by a simulation example.

Index Terms—Adaptive control, linear quadratic (LQ) index, Markov
jump parameter, sampled-data based control, stochastic system.

I. INTRODUCTION

We consider continuous-time systems with unknown Markov jump
parameters

_xt = A(�t)xt +B(�t)ut (1)

where xt 2 IRn and ut 2 IRm are the system state and input, re-
spectively; A(�t) and B(�t) are real valued matrices; �t is the un-
known Markov jump parameter process taking values in a finite set
S = f1; 2; . . . ; Ng with transition probability matrix

P (� ) = [Pij(�)] = [P (�t+� = jj�t = i)] = e
��
: (2)

Here, � = (�ij), �ij � 0, j 6= i, and

�i = ��ii =

N

j=1;j 6=i

�ij : (3)

For simplicity, we assume that the initial time is t0 = 0, and the initial
time values x0 = x(0) and �0 = �(0) are deterministic. Since almost
all sample paths of �(�) are constant except for a finite number of simple
jumps in any finite time interval of [0;1), we define the paths of x(�)
in an obvious way, joining solution arcs of (1) at jump points of �. The
x(t) sample paths so determined are then continuous with probability
one [1].
In this note, we first design sampled-data (SD) based adaptive control

for stochastic systems (1) under the following quadratic index:

J(x0; �0; u) = E

1

0

x
T
t Q(�t)xt + u

T
t R(�t)ut dt (4)

where Q(�t) � 0, R(�t) > 0, and xT denotes the transpose of x.
Then, we investigate the optimality of the SD-based adaptive control,
especially, the index difference between the SD-based adaptive control
and conventional optimal linear quadratic (LQ) control.
Systems with Markov jump parameters belong to the category of

“hybrid systems,” which are emerging as a convenient mathematical
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framework for the formulation of various design problems in the
fields such as target tracking, fault tolerant control, and manufacturing
processes, etc. [2]. The study on the LQ optimal control problem of
such systems can be traced back at least to the work of Krasovskii
and Lidskii [3]. When the Markov jump parameter process �t and the
system state process xt are known for all t, stochastic stabilizability
and controllability of the systems are investigated and the jump LQ
optimal control problem is solved in [4]. Later, more progress has been
made on such as output feedback control, optimal control (with infinite
Markov jump parameters), and almost-sure and moment stabilization
(with finite-state Markov jump parameters) [5]–[7]. Recently, some
results on adaptive stabilization control of Markov jump parameter
systems are presented in [8] and [9] for the case where the system state
process xt is known for all t.
This note is devoted to the case where the Markov jump process

�t is unknown and only the sampled-data (i.e. the information mea-
sured at sample time instances) rather than the complete process of the
system state is available for control design. Since digital technology
offers many benefits, modern control systems usually employ digital
technology for controllers and sometimes sensors [10]. The SD-based
LQ control problem of stochastic linear continuous-time systems with
known parameters is studied in [11]. In addition to the stability anal-
ysis of the closed-loop systems, the index difference between SD-based
LQ control and conventional LQ control is investigated. The purpose
of this note is to: 1) give an SD-based parameter estimator to estimate
the unknownMarkov jump process �t, 2) design a suboptimal adaptive
control based on the sampled-data of the state process, the parameter
estimates and the index (4), and 3) analyze the impact of the sample
size on the optimality of the SD-based adaptive control.
The note is organized as follows. In Section II, some preliminary

results and notations are listed. In Section III, sampled-data based pa-
rameter estimate and adaptive control are designed, and the optimality
of the control is analyzed. In Section IV, an example is presented to
illustrate the result of Section III. Section V gives some concluding
remarks.

II. PRELIMINARIES AND NOTATIONS

First, we introduce the following definition [4].
Definition 2.1: Systems (1)–(3) are said to be stochastically stabi-

lizable if, for all finite x0 2 IRn and �0 2 S , there exists a linear
feedback control law

ut = �L(�t)x(t)

with kL(�t)k < 1 such that

E

1

0

x
T (t; x0; �0; u)x(t; x0; �0; u)dtjx0; �0 � x

T
0Mx0

where M is a symmetric positive–definite matrix. For short, we will
simply say that [A(�t); B(�t)] is stochastically stabilizable.
Here and hereafter, kxk = (x21 + x22 + . . . + x2n)

1=2 denotes the
Euclidean norm of vector x, and kAk denotes the corresponding in-
duced matrix norm of A, which is equal to the largest eigenvalue of
(ATA)1=2. For simplicity, in the sequel, we sometimes write A(i),
B(i),Q(i),R(i),K(i), L(i),M(i), etc., by Ai, Bi,Qi, Ri,Ki, Li,
andMi, respectively.
Assume that [Ai; Q

1=2
i ] is observable for each i 2 S , and

[A(�t); B(�t)] is stochastically stabilizable. Then, from [4] we know
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that when the values of �t are completely available at all time instance
t, the N -coupled algebraic Riccati equation set

AT
i Mi+MiAi�MiBiR

�1
i BT

i Mi+

N

j=1

�ijMj+Qi=0; i 2 S (5)

has a unique set of positive–definite matrices fMi; i = 1; 2; . . . ; Ng;
the optimal control is

u�t = �L(�t)xt �
= �R�1(�t)BT (�t)M(�t)xt (6)

the closed-loop system is stable in the sense that

lim
t!1

E kxtk2 = 0

and the optimal index is

J(u�) = xT0M(�0)x0:

Here, Ri, Qi andMi are defined by (4) and (5), respectively.

III. MAIN RESULTS

Let

Li = R�1i BT
i Mi

where Bi, Ri are defined in (1) and (4), respectively; fMi; i 2 Sg is
the set of unique, positive solutions of (5). Then, the SD-based adaptive
control is designed as

ut = �L(�̂kh)xkh; t 2 [kh; (k + 1)h) (7)

where h is the sample step size, and

�̂kh = argmin
i2S

kxkh � x̂kh(i)k :

Here, x̂kh(i) is the solution of

_xt = Aixt +Biut

with initial value x(k�1)h, or equivalently

x̂kh(i) = eA hx(k�1)h �
kh

(k�1)h

eA (kh��)d�

�BiL �̂(k�1)h x(k�1)h:

Theorem 3.1: Consider system (1)–(3), and assume [A(�t); B(�t)]

is stochastically stabilizable; and for 8i 2 S , [Ai; Q
1=2
i ] is observable.

Let

Dij(h) =
eA h � eA h

h

� 1

h

h

0

eA (h��)d�Bi �
h

0

eA (h��)d�Bj Lj ; i; j 2 S:

If for some "0 2 (0; 1) and h0 2 (0; 1]

d0<1;
ld1

1� d1
+ 3�hl1

(1+d0)
2

(1�d0)2 �
1�"0
2

8h � h0 (8)

detDij(h) 6= 0 8i 6= j 8h � h0 (9)

then, under the SD-based adaptive control (7) with sample size h �
minf1; h0g, we have

E

1

0

kxsk2 + kusk2 ds <1

E

1

0

xTs Q(�s)xs + uTs R(�s)us ds

� xT0M(�0)x0 + 4l2�x
T
0Kx0h+O(h2) (10)

where

d0 =2c1he
2ch; d1 = c1he

ch (11)

� =(N�1) ek�k�1 ; c1 = max
i;j

kAi �BiLjk (12)

c = max
i
kAik; l = max

i;j
MiBiR

�1
i BT

JKj (13)

l1 = max
i;j;k

(Li � Lj)
TBT

kKk (14)

l2 = max
i;j;k;m;n

(Li � Lj)
TRk(Lm � Ln) (15)

K = max
i2S

xT0Kix0
�0kKik ; �0 = min

i2S

"0
�max(Ki)

(16)

and fKj ; j 2 Sg is the (unique) symmetric solution set of

(Ai�BiLi)
TKi +Ki(Ai�BiLi)+

N

j=1

�ijKj = �I; i 2 S:
(17)

Remark 3.1: By simple calculations, we can see that

d1 � d0 � 1

5
;
(1 + d0)

2

(1� d0)2
� 2 8h � min 1;

3� 2
p
2

2c1e2c
:

(18)
Thus, (8) holds for all h � 2(1� "0)=(5lc1e

c + 24�l1). As for (9),
noticing that

lim
h!0

Dij(h) = Ai � Aj � (Bi �Bj)Lj

we know that if the distinguishable condition (similar to that of [12])

det (Ai � Aj � (Bi �Bj)Lj) 6= 0 8i; j 2 S

holds, then by the continuity of Dij(h) in terms of h there must be a
sufficient small h0 such that (9) is satisfied for all h 2 (0; h0].
To prove Theorem 3.1, we need the following lemmas.
Lemma 3.1: Suppose �t is aMarkov process taking values in a finite

set S = f1; 2; . . . ; Ng, and subject to (2) and (3); and f(�t) : IR1 !
IRn�m, g(�t) : IR1 ! IRm�n, are measurable functions with respect
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to �f�s; s � tg. Then, in the case where k is any nonnegative integer
and h � 1

E

(k+1)h

kh

k(f(��)� f(�kh))g(��)kd�j�kh = i0

� �h
2max

l2S
k(f(l)� f(i0)) g(l)k

where � is given in (12).
Proof: Since almost all sample paths of �(t) are constant ex-

cept for a finite number of simple jumps in any finite time interval
of [0;1), we suppose the series of finite number of jump instants
are s1; s2; . . . ; sm, for one sample path of �(t) during time interval
[kh; (k + 1)h), satisfying

kh = s0 � s1 < s2 < � � � < sm < sm+1 = (k + 1)h:

Noticing that

j 6=i

Pi j(h) =h

j 6=i

e�h � I

h
i j

�h

j 6=i

e�h � I

h
� �h (19)

we have

E

(k+1)h

kh

k(f(��)� f (�s )) g(��)kd�j�s = i0

=

m

i=0

f �s � f(i0) g �s

� (si+1 � si)

m

i=0

P� ;� (si+1 � si)

� max
l2S

k(f(l)� f(i0)) g(l)kh

�

m

i=0

P� ;� (si+1 � si)

� max
l2S

k(f(l)� f(i0)) g(l)kh
� =j;j 6=i

Pi j(h)

� �h
2max

l2S
k(f(l)� f(i0)) g(l)k :

Lemma 3.2: For system (1)–(3), suppose (9) holds. Then, under
adaptive control (7) with sample size h � minf1; h0g, we have

P (�̂kh = �kh) � 1� �h:

Proof: When h � minf1; h0g, by (9) we know that during the
period (k � 1)h � t < kh, if �t does not jump, then the estimation
�̂kh of �kh is precisely correct. So

f�̂kh = �khg � �t = �(k�1)hj(k � 1)h � t < kh :

That is

P (�̂kh = �kh) � 1�
j 6=�

P� j(h)

which together with (19) completes the proof.
Lemma 3.3: Under the conditions of Theorem 3.1, we have for any

t 2 [t0; t0 + h)

kxtk � (1 + d1)kxt k kxt k �
1

1� d1
kxtk (20)

and for any t 2 [t0 � h; t0 + h)

kxtk � (1 + d0)kxt �hk kxt �hk �
1

1� d0
kxtk (21)

where d0 and d1 are given by (11), and

t
0 =

t

h
h

with bxc being the maximal integer less than or equal to x.
Proof: Substituting the SD-based adaptive control (7) into (1),

we get the following closed-loop form:

_xt = A(�t)xt �B(�t)L(�̂t )xt : (22)

From this, we have for any t 2 [t0; t0 + h)

xt � xt =

t

t

A(�s)�B(�s)L(�̂t ) ds � xt +

t

t

A(�s)(xs� xt )ds:

Hence, for any t 2 [t0; t0 + h)

kxt � xt k � c

t

t

kxs � xt kds+ c1hkxt k

which together with the Gronwall lemma [13] gives

kxt � xt k � c1he
c(t�t )kxt k � d1kxt k (23)

where c1 and c are defined by (12) and (13). Thus, from

kxtk � kxt k+ kxt � xt k � (1 + d1)kxt k

we get the first inequality of (20), and from

kxt k � kxtk+ kxt � xt k � kxtk+ d1kxt k

we get the second inequality of (20). Here, the condition d1 � d0 < 1
has been used [see (8) and (11)].
By (22) we have, for all t 2 [t0 � h; t0 + h)

xt � xt �h =

t

t �h

A(�s)�B(�s)L(�̂t �h) ds � xt �h

+

t

t �h

A(�s)(xs � xt �h)ds:
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Hence, similar to (20), we can get (21).
Proof of Theorem 3.1: Let

A1(�t) = A(�t)�B(�t)L(�t):

Then, (1) with SD-based adaptive control (7) has the following closed-
loop form:

_xt = A1(�t)xt +B(�t) L(�t)� L(�̂t ) xt

+B(�t)L(�̂t )(xt � xt ): (24)

Noticing that [A(�t); B(�t)] is stochastically stabilizable, by [4] we
know that the symmetric solutionsKi (i 2 S) of the equation set

A
T
1 (i)Ki +KiA1(i) +

N

j=1

�ijKj = �I

are positive definite. Construct K(�t) such that K(�t) = Ki when
�t = i. Then, similar to [1, eq. (2.26)], by (24), we have

A x
T
t K(�t)xt

�
= lim

�!0

1

�
E x

T
t+�K(�t+�)xt+�j�t � x

T
t K(�t)xt

= x
T
t A

T
1 (�t)K(�t) +K(�t)A1(�t) +

j

�� jKj xt

+ 2xTt L(�t)� L(�̂t )
T

B
T (�t)K(�t)xt

+ 2(xt � xt )
T
L
T (�̂t )B

T (�t)K(�t)xt

= �kxtk
2 + 2xTt (L(�t)� L(�t ))

T
B
T (�t)K(�t)xt

+ 2xTt L(�t )� L(�̂t )
T

B
T (�t)K(�t)xt

+ 2(xt � xt )
T
L
T (�̂t )B

T (�t)K(�t)xt (25)

where A is the infinitesimal operator of the joint process f�t; xtg.
For any given positive integerK , by Lemma 3.1, we have

E

Kh

0

x
T
t (L(�t)� L(�t ))

T
B
T (�t)K(�t)xtdt

� E

Kh

0

(L(�t)� L(�t ))
T
B
T (�t)K(�t)

� (1 + d1)
2kxt k

2
dt

�

K�1

k=0

N

i=1

E

(k+1)h

kh

(L(�s)�L(�s ))
T
B
T (�s)K(�s)

� (1 + d1)
2kxkhk

2
dsj�kh = i

� P (�kh = i)

� l1(1 + d1)
2
�hE

Kh

0

kxt k
2
dt

� l1
(1 + d1)

2

(1� d1)2
�hE

Kh

0

kxtk
2
dt: (26)

Here, l1 is given by (14), and the inequalities (20) have been used.
Similarly, for any t > 0, we can get

E

t

t

x
T
s (L(�s)� L(�t ))

T
B
T (�s)K(�s)xsds

� l1
(1 + d1)

2

(1� d1)2
�hE

t

t

kxsk
2
ds: (27)

This, together with (26), leads to

E

t

0

x
T
s (L(�s)� L(�s ))

T
B
T (�s)K(�s)xsds

� l1
(1 + d1)

2

(1� d1)2
�hE

t

0

kxsk
2
ds: (28)

Similar to (26) and (27), by (21) and Lemma 3.2 we have

E

Kh

0

x
T
t L(�t )� L(�̂t )

T

B
T (�t)K(�t)xtdt

� E

Kh

0

L(�t )� L(�̂t )
T

B
T (�t)K(�t)

�(1 + d0)
2kxt �hk

2
dt

�

K�1

k=0

N

i=1

E

(k+1)h

kh

L(�s )�L(�̂s )
T

B
T (�s)K(�s)

�(1 + d0)
2kxs �hk

2
dsj�s �h = i

� P (�s �h = i)

� 2l1
(1 + d0)

2

(1� d0)2
(1� (1� �h))E

Kh

0

kxtk
2
dt

� 2l1
(1 + d0)

2

(1� d0)2
�hE

Kh

0

kxtk
2
dt

and

E

t

t

x
T
s L(�s )� L(�̂s )

T

B
T (�s)K(�s)xsds

� 2l1
(1 + d0)

2

(1� d0)2
�hE

t

t

kxsk
2
ds:

That is

E

t

0

x
T
s L(�s )� L(�̂s )

T

B
T (�s)K(�s)xsds

� 2l1
(1 + d0)

2

(1� d0)2
�hE

t

0

kxsk
2
ds: (29)
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Notice that by (13), (20), and (23)

(xt � xt )
T
L
T (�̂t )B

T (�t)K(�t)xt �
ld1

1� d1
kxtk

2

and by 0 < d1 � d0 < 1

(1 + d1)
2

(1� d1)2
�

(1 + d0)
2

(1� d0)2
:

Then, it follows from (25), (28), and (29) that

E x
T
t K(�t)xt � x

T
0K(�0)x0

� � 1�
2ld1
1� d1

� 6l1�h
(1 + d0)

2

(1� d0)2
E

t

0

kxsk
2
ds

� � 1�
2ld1
1� d1

� 6l1�h
(1 + d0)

2

(1� d0)2
min
i2S

1

�max(Ki)

� E

t

0

x
T
sK(�s)xsds: (30)

Noticing that the second inequality of (8) is equivalent to

1�
2ld1
1� d1

� 6�hl1
(1 + d0)

2

(1� d0)2
� "0 > 0

by (30) and the second equality of (16) we have

E x
T
t K(�t)xt � x

T
0K(�0)x0 � �0E

t

0

x
T
s K(�s)xsds

which together with the Gronwall lemma gives

E x
T
t K(�t)xt � e

�� t
x
T
0K(�0)x0: (31)

Thus

lim
t!1

E kxtk
2 = 0 E

1

0

x
T
t xtdt � x

T
0Kx0 (32)

where K is given by (16).
We now study the index. Define

u
�
t = �L(�t)xt:

By (20) and (31), similar to (28) and (29), we get

E

1

0

(us � u
�
s)

T
R(�s) (us � u

�
s) ds

= E

1

0

x
T
s L(�s)�L(�̂s )

T

R(�s) L(�s)�L(�̂s ) xs

+ 2xTs L(�s)�L(�̂s )
T

R(�s)L(�̂s )(xs�xs )

+(xs�xs )
T
L
T (�̂s )R(�s)L(�̂s )(xs�xs ) ds

� l2�h
(1 + d0)

2

(1� d0)2
(2 + 2�h)E

1

0

kxsk
2
ds

+ l4
d21

(1� d1)2
E

1

0

kxsk
2
ds

+ 4l3�h
d1(1 + d0)

2

(1� d1)(1� d0)2
E

1

0

kxsk
2
ds

= 2l2�h
(1 + d0)

2

(1� d0)2
+ f(h)h2 E

1

0

kxsk
2
ds

= 2l2�h
(1 + d0)

2

(1� d0)2
+O(h2) E

1

0

kxsk
2
ds (33)

where l2 is given by (15), and

l3 = max
i;j; k;m

k(Li � Lj)
�
RkLmk ; l4 = max

i;j
L
�
jRiLj

f(h) = 2l2�
2 (1 + d0)

2

(1� d0)2
+ l4

c21e
2ch

(1� d1)2

+ 4l3�
(1 + d0)

2

(1� d1)(1� d0)2
c1e

ch
:

Similar to [1, eq. (2.29)], by (1) we obtain

A x
T
t M(�t)xt

�
= lim

�!0

1

�
E x

T
t+�M (�t+�)xt+�j�t � x

T
t M(�t)xt

= x
T
t A

T (�t)M(�t) +M(�t)A(�t) +

N

j=1

�� jMj xt

+ u
T
t B

T (�t)M(�t)xt + x
T
t M(�t)B(�t)ut:

Here,A is the infinitesimal operator of the joint process f�t; xtg. Then,
by Dynkin’s formula, we have

E x
T
t M(�t)xt =x

T
0M(�0)x0

+E

t

0

u
T
s B

T (�s)M(�s)xs

+xTs M(�s)B(�s)us ds

+E

t

0

x
T
s A

T (�s)M(�s)+M(�s)A(�s)

+

N

j=1

�� jMj xsds:
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Thus, according to (5)

E xTt M(�t)xt +

t

0

xT (s)Q(�s)x(s) + uTs R(�s)us ds

= xT0M(�0)x0

+E

t

0

us +R�1(�s)B
T (�s)M(�s)xs

T

R(�s)

� us +R�1(�s)B
T (�s)M(�s)xs ds:

This together with (32) and (33) leads to

J(u) =E

1

0

xTs Q(�s)xs + uTs R(�s)us ds

=xT0M(�0)x0 � lim
t!1

E xTt M(�t)xt

+ E

1

0

(us � u�s)
T
R(�s) (us � u�s)ds

=xT0M(�0)x0 +E

1

0

(us�u
�

s)
T
R(�s) (us�u

�

s) ds

�xT0M(�0)x0 + 2l2�
(1 + d0)

2

(1� d0)2
xT0Kx0 h+O(h2)

�xT0M(�0)x0 + 4l2�x
T
0Kx0h+O(h2):

Here, the second inequality of (18), i.e. ((1 + d0)
2=(1� d0)

2) � 2,
has been used.

Remark 3.2: Here, we consider only the case where the system is of
noise-free and the state x(t) is assumed to be measured precisely at the
sampling instants. Heuristically, this is a good starting point to study
the more general cases where there are, for instance, unknown random
disturbances, measurement noises, and the parameter set S has infinite
(countable or uncountable) elements. It is worth noticing that if the
system has Brownian motion as its disturbance and the coefficient of
the disturbance is a nonzero constant, then minimum value of index (4)
will be infinity, and so, not suitable for optimal control synthesis. In this
case, a good choice might be the following averaged index function:

J(u) = lim sup
t!1

1

t
E

t

0

xTs Q(�s)xs + uTs R(�s)us ds:

IV. EXAMPLE

Example 1: Consider a system of the form (1) with N = 2

A1 =
0 1

0 0
B1 =

0

1

A2 =
0 0

1 0
B2 =

1

0
� =

�1 1

1 �1
:

In the index (4), we have Qi = I and Ri = I for i = 1; 2.

Note that [Ai; Q
1=2
i ] is observable for i = 1; 2. By [4],

[A(�t); B(�t)] is stochastically stabilizable. The solution set of
the two coupled algebraic Riccati equations is

M1 =
1:73205 1

1 1:73205

M2 =
1:73205 1

1 1:73205

the feedback gain matrices are

L1 = [1 1:73205] L2 = [1:732 05 1]

and the solution set of (17) is

K1 =
1:0415 0:2679

0:2679 0:5774

K2 =
0:5774 0:2679

0:2679 1:0415
:

It is easy to show that detD12(h) 6= 0 and detD21(h) 6= 0 for all
0 � h � 2:3, and (8) holds for all h � 0:01 and "0 2 (0; 0:3].
Let us denote the index difference between the SD-based adaptive

LQ control and the conventional LQ control as

�J(t) =J(x0; �0; u; t)� J(x0; �0; u
�; t)

=E

t

0

xT (t)Q(�t)x(t)+ uTt R(�t)ut dt

�E

t

0

xT (t)Q(�t)x(t)+ (u�t )
T
R(�t)u

�

t dt

where ut and u�t are defined by (6) and (7), respectively. By (10), we
have

�J
�
= lim sup

t!1
k�J(t)k � 4l2�x

T
0Kx0h+O(h2):

The simulation results of Example 1 are shown in Figs. 1 and 2 with
h = 0:01 and 0.0001, respectively, where the first part of each figure
represents�J(t), the index difference between the SD-based adaptive
LQ control and the conventional LQ control, the second part represents
the jump system parameter �(t), the third and the fourth parts represent
the state process x(t), and the last part represents the control u(t). To
fully display the differences, 30 simulations with a fixed initial state
values are given for h =0.01 and 0.0001, respectively. To observe the
jump properties clearly, only three of the 30 �(t) processes are depicted
in each of the two figures. It can be seen that the smaller the step size
h is, the smaller the index difference �J(t) is.

V. CONCLUDING REMARKS

In this note, the SD-based LQ adaptive control problem of contin-
uous-time linear systems withMarkov jump parameters is investigated.
For the case where the Markov jump process �t is unknown and only
the sampled-data rather than the complete process of the system state
is available, a parameter estimator and a control design method are
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Fig. 1. Curves of �J , �, x1, x2, and u, when h = 0:01.

Fig. 2. Curves of �J , �, x1, x2, and u, when h = 0:0001.

given. It is shown that when the sample step size is small, the sam-
pled-data based adaptive control is suboptimal under LQ index. It is
worth mentioning that our controller is designed directly based on the
original continuous system and the original continuous performance
index, without involving any discretized models and discretized in-
dexes. As for how to figure out the maximal range of h, how to choose
h optimally, and how to obtain an explicit expression describing the
relationship between the sample step size and system structure and pa-
rameters, it is very difficult and complex, and needs further study.
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Remarks on the -Input Converging-State Property

E. P. Ryan

Abstract—Let and consider a system _ = ( ) :
, with the property that the associated autonomous system

_ = ( 0) has an asymptotically stable compactum with region of
attraction . Assume that is a solution of the former, defined on [0 ),
corresponding to an input function . Assume further that, for each com-
pact , there exists 0 such that ( ) ( 0)
for all ( ) . A simple proof is given of the following -input
converging-state property: if for some [1 ) and has
an -limit point in , then approaches .

Index Terms—Asymptotic stability, converse Lyapunov theory, domain
of attraction.

I. INTRODUCTION

For a linear system _x = Fx + Gu, with F Hurwitz, the following
properties are elementary: P1) if x is a solution on + := [0;1) corre-
sponding to an inputu 2 L1 with u(t)! 0 as t!1, then x(t)! 0
as t ! 1; and P2) if x is a solution on + corresponding to an input
u 2 Lp for some p 2 [1;1), then x(t) ! 0 as t ! 1. Exploita-
tion of these properties is widespread in the literature (on, for example,
adaptive control, robustness to disturbances, and interconnected/cas-
caded systems). The question of nonlinear counterparts arises: to what
extent do properties P1) and P2) persist in the context of a finite-dimen-
sional nonlinear system _x = f(x; u) under the hypothesis that 0 is an
asymptotically stable equilibrium of the associated autonomous system
_z = f�(z), where f�( � ) := f(�; 0)? Even in the simplest of nonlinear
systems satisfying the latter hypothesis, properties P1) and P2) may fail
to hold. One such scalar system is given by _x = �x+x2uwhich, with
initial data x(0) = 1 and input u : t 7! 2e�t, has unbounded solution
x : t 7! et.
In [1] (under the assumption that f is continuous and is locally

Lipschitz in its first argument, uniformly with respect to its second
argument in compact sets), a proof is provided of the following
“well-known but hard-to-cite fact” [a nonlinear counterpart of the
converging-input converging-state property P1)]. If a) x is a solution
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of the system _x = f(x; u), defined on +, corresponding to an input
u 2 L1 with u(t) ! 0 as t ! 1, b) 0 is an asymptotically stable
equilibrium of the associated autonomous system _z = f�(z) with
domain of attraction A, and c) x is K-recurrent for some compact
K � A, then x(t)! 0 as t!1. Here,K-recurrence is the property
that, for each T > 0, there exists t > T such that x(t) 2 K . The
recurrence hypothesis c) is equivalent to positing that x has an !-limit
point in A. The nonlinear converging-input converging-state property
in [1] has a closely-related antecedent in [2], Theorem 2 of which
contains the essence of the result.
The purpose of the present note is to provide a nonlinear counterpart

of the Lp-input converging-state property P2) (we use the term “input”
in the general sense of either a control input or disturbance input): the
essence is to identify conditions under which an input of bounded en-
ergy generates a converging state.1 The main result subsumes the fol-
lowing: if a) x is a solution of the system _x = f�(x)+ g(x)u (f� and
g locally Lipschitz), defined on +, corresponding to an input u 2 Lp

for some p 2 [1;1), b) the associated autonomous system _z = f�(z)
has an asymptotically stable compactum C with domain of attraction
A, and c) x has an !-limit point in A, then x approaches C (in a sense
made precise later).

II. PRELIMINARIES

The Euclidean norm and inner product on N (or M ) are denoted
by j � j and h�; �i, respectively. ForG 2 N�M ; jGj := minjuj=1 jGuj.
For a nonempty set C � N , the function dC : N ! +, given by
dC(y) := infc2C jy� cj, is the distance function for C and a function
x : + ! N is said to approach C if dC(x(t)) ! 0 as t ! 1.
Let I � be such that + � I , let � N be nonempty and open,
and let x : I ! . A point z 2 cl( ) is an !-limit point of x if there
exists an unbounded sequence (tn) in + with x(tn)! z as n!1;
the !-limit set of x is the set of all !-limit points of x, this set is is
denoted by 
(x). For later convenience, we record some well-known
properties of !-limit sets (see, for example, [4]).

Proposition 2.1: For every function x : + ! the following
hold.

i) 
(x) is closed.
ii) 
(x) = ; if, and only if, jx(t)j ! 1 as t ! 1.
iii) If x is continuous and
(x) is nonempty and compact, then x is

bounded.
iv) If x is continuous and bounded, then 
(x) is nonempty, com-

pact, connected, and is approached by x.

III. THE SYSTEM

Denote, by U := L1
loc( +;

M ), the space of locally integrable
functions u : + ! M . Let � N be nonempty and open. Let
f : � M ! N be continuous and such that

8 compactK � 9k > 0 : jf(x; u)� f(x; 0)j � kjuj

8(x; u) 2 K � M (1)

a canonical case being that wherein f is affine in the input, viz.
f(x; u) = f�(x) + g(x)u. We assume further that

f
�( � ) := f(�; 0) is locally Lipschitz: (2)

1In a context different from that of this note, asymptotic properties of so-
lutions of systems with inputs of bounded energy (viz. the “bounded-energy
weakly-converging-state,” and the “bounded-energy frequently-bounded-state”
properties) play a role in asymptotic characterizations of integral-input-to-state
stability in [3].
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